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Global warming

Widespread warming has occurred.  Globally averaged, the planet is about 0.75°C warmer 
than it was in 1860, based upon dozens of high-quality long records using thermometers 

worldwide, including land and ocean.



Unequivocal evidence of warming
1880-2007

National Climatic Data Center
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Global Annual Average Temperatures

Courtesy Susan Solomon, NOAA
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Todd Mitchell, UW/JISAO



Tree-ring based PDO index reconstructions:
(ex: Gedalof and Smith 2001)

Plots courtesy of Torrence and Compo http://paos.colorado.edu/research/wavelets



Understanding global warming

IPCC Summary for Policymakers 2007



Understanding global warming
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Understanding global warming

IPCC Summary for Policymakers 2007



Regional attribution

Second-Order Draft Chapter 9 IPCC WG1 Fourth Assessment Report 
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www.climate.washington.edu

Trend in annual mean 1907-2006
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Trend in annual mean 1957-2006
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Knowles et al. 2006

Western warming trends historically have been (and
presumably will continue to be) marked by strong sea-
sonal and geographic patterns (e.g., Diaz and Quayle
1980; Dettinger et al. 1995; Cayan et al. 2001). Because
of the general wintertime maximum of snowfall and
precipitation in the region, contributions of snow to
western precipitation are likely to be most affected by
wintertime (November–March) temperatures, whereas
changes in onset of snowmelt (once snow is on the
ground) are more likely to be sensitive to springtime
temperatures. Thus, snow deposition and snowmelt are
expected to be differently sensitive to warming trends
in different seasons, and the warming trends associated
with snowfall and snowmelt changes may be distin-
guishable by differences in their geographic patterns
and rates of change. Much work has been accomplished
in mapping trends in snowmelt response; this study
documents a parallel set of trends that has changed the
relative contributions of snowfall to western precipita-
tion.

In section 2, the data used and the methods applied
are discussed, and the robustness of the approach is
addressed. In section 3a, trends in winter precipitation
form are presented, and in section 3b, the influence of
temperature on these trends is examined. In section 3c,
the monthly patterns underlying the seasonal trends are
presented. In section 3d, the role of climate variability
in generating trends in precipitation form is investi-
gated. Finally, the main results are summarized in sec-
tion 4, and their implications discussed.

2. Data and methods

The measure of snowfall that will be used in this
study is the snowfall liquid water equivalent (SFE), de-

fined as the precipitation totals on days for which newly
fallen snow was recorded. These data and the tempera-
ture data used in this study were derived from the his-
torical Summary of the Day (SOD) observations from
cooperative weather stations in the 11 westernmost
states of the conterminous United States (Fig. 1), ob-
tained from the National Climatic Data Center. The
observations used here comprise daily snowfall depth
(S, actual depth as opposed to liquid equivalent), pre-
cipitation (P, regardless of form), and maximum
(TMAX) and minimum (TMIN) surface air tempera-
ture, from October 1948 to September 2004. Because S
is not a reliable proxy for snowfall liquid equivalent
since snow density can vary significantly, and because P
observations have no associated data flags indicating
the precipitation form (i.e., solid, liquid, or mixed), in
this study, a nonzero value of snowfall depth (S) is used
to assign a solid form to any measured precipitation
(P), thereby estimating snowfall water equivalent
(SFE).

Precipitation and snowfall totals were recorded at
1653 stations during some or all of this period; tempera-
tures were recorded at 1517 stations. Emulating the ap-
proach developed by Huntington et al. (2004) for a similar
analysis in the northeastern United States, the records
of precipitation and snowfall at the western stations
were culled according to the following sequential steps.

1) Any cool season during which precipitation or snow-
fall data were missing for 10 or more days between
November and March was considered incomplete
and was excluded from the analysis.

2) Any station that was missing !50% of its Novem-
ber–March daily observations in any given 10-yr pe-
riod was excluded.

FIG. 1. (a) Trends in fraction of winter (Nov–Mar) precipitation falling on snowy days (SFE/P), 1949–2004: red
indicates decreasing snowfall fractions; symbol radius is proportional to study period changes, measured in stan-
dard deviations of the detrended time series as indicated; circles indicate high trend significance ( p " 0.05), and
squares indicate lower trend significance. (b) The WY2004 winter SFE/P vs WY1949 winter SFE/P, with significant
SFE/P trends highlighted with squares. Dashed line is the least squares fit to all data points.
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Trends in snowfall equivalent



Trends in April 1 snow water equivalent, 1950-2000
neg pos

Mote et al. 2005



As the West 
warms,

winter flows rise 
and summer flows 

drop

Stewart et al.
J. Climate 2005



Attribution

 “up to 60% of  the climate 
related trends of river flow, 
winter air  temperature and 
snow pack [in the Western 
US] between 1950-1999 are 
human-induced.” - Barnett et 
al. 2008 
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Estimating future climate

• How much GHGs will there be? 



Estimating future climate

• How much GHGs will there be? 



Estimating future climate

• How much GHGs will there be? 

• How responsive is the climate?



Summary for Policymakers  IPCC WGI Fourth Assessment Report 
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Figure SPM-7. Solid lines are multi-model global averages of surface warming (relative to 1980-99) for the 

scenarios A2, A1B and B1, shown as continuations of the 20
th

 century simulations.  Shading denotes the plus/minus 

one standard deviation range of individual model annual means. The number of AOGCMs run for a given time 

period and scenario is indicated by the coloured numbers at the bottom part of the panel.  The orange line is for the 

experiment where concentrations were held constant at year 2000 values.  The gray bars at right indicate the best 

estimate (solid line within each bar) and the likely range assessed for the six SRES marker scenarios.  The 

assessment of the best estimate and likely ranges in the gray bars includes the AOGCMs in the left part of the figure, 

as well as results from a hierarchy of independent models and observational constraints (Figs. 10.4 and 10.29) 

 

[To be changed:  

Change annotation from cnstant composition to year 2000 constant concentration. 

Colour central bar in grey bars and lettering to match A2, A1B, B1 curves as appropriate. 

Drop model numbers and move to caption]. 
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Temperature change
2080-99 minus 1980-99

Averaged over 21 global models; IPCC Fig 11.12

Final Draft Chapter 11 IPCC WG1 Fourth Assessment Report 
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Precipitation change
2080-99 minus 1980-99

Averaged over 21 global models; IPCC Fig 11.12

Final Draft Chapter 11 IPCC WG1 Fourth Assessment Report 
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Downscaling



Difference in projected winter temperature (°C) 

Texture of warming: Regional model 
minus global model for 2050s



Conclusions

• human influence on climate emerging from 
noise at smaller scales (western N. Am.) 

• Observed PNW changes: 1.5°F warming, 
corresponding hydrologic shifts

• Future climate: 0.5°F/decade warmer, precip?, 
rest depends on us


